108 Becmuux Uunosayuonnozo Eepazutickozo yuusepcumema. 2015. Ne 2 ISSN 1729-536X

YK 004.438

T.M. Saliy, Candidate of Pedagogical Science
Innovative University of Eurasia (Pavlodar)
E-mail; toma_sal@mail.ru

Two strategies of interface implementation in the C# programming language

Annotation. The article describes two strategies of interface implementation. The first one, additional
object properties of a class are set. The class inheriting interface and implementing its methods can definitely
fulfill them. The second strategy of implementation is in closing methods of interface (making them private),
specified the method name by the interface name.

Key words: interface, programming, methods, software code, classes, object-oriented programming
language.

C# is a new software programming language from Microsoft. The goal of design is to develop
component-oriented language for a new.NET framework. C# is a totally object-oriented language, where even
types, integrated into language are represented by the classes [1].

Interface is a totally abstracted class, all the methods of which are abstract. Interface methods are
declared with no indicating access modifiers (default public). The class, inheriting interface shall implement all
interface methods. There is no complete multiple inheritance in the C# language. In order to harmonize this
blank, multiple inheritance of interfaces is acceptable.

Let’s examine two strategies of interface implementation and describe a particular interface, defining
additional properties of the class objects:

public interface IProps{
void Propl(string s);
void Prop2 (string name, int val);

¥

The class, inheriting interface and implementing its methods, can definitely implement them, declaring
the relevant methods of the class opened (public).
Another strategy of realization is in making some interface methods closed (private), specified the method
name by interface name:
public class ClainP:IProps{
public ClainP(){ }
void IProps.Propl1(string s) {
Console.WriteLine(s);
}
void IProps.Prop2(string name, int val) {
Console.WriteLine("name = {0}, val ={1}", name, val);
}
¥

Now let’s examine how to get an access to private methods. There are two ways to get access to private
methods:

-Wrap-around. Public method being a wrap of private method is performed.

-Casting. The object of IProps interface class is created, received by transformation (casting) of ClainP
object of the source class. Private interface methods are available for this object.

Example of private methods wrapping in the ClainP class:

public void MyProp1(string s){

((IProps)this).Prop1(s);

}
public void MyProp2(string s, int x){
((IProps)this).Prop2(s, X);

The methods are renamed and have other names, which will be known for clients of the class. Casting had
to be used in the wrap for a call of private method, resulting this object to IProps interface class [2].

Let’s examine the second way of getting an access to private methods — transformation (casting) to
a class of interface. Creating interface object in the normal way using operation new is impossible, but the

Becmnux Uunosauuonunozo Eepasuiickozo yuusepcumema. 2015. Ne2 ISSN 1729-536X 109

object of interface class can be declared and be connected to the real object by upcast (casting) of inheritance
object to a class of interface.

public void TestClainlProps(){

Console.WriteLine("Object of ClainP class causes public methods!");
ClainP clain = new Clain();

clain.Prop1("property of the method 1");

clain.Prop2("Vladimir", 44);

Console.WriteLine("Object of ClainP class causes public methods!");
IProps ip = (IProps)clain;

ip.Prop1(“interface: property");

ip.Prop2 ("interface: property",77);

}

With multiple inheritance of interfaces the problems also occur, but their solution is become easier. Let’s
examine two main problems: name conflict and inheritance from the common ancestor.

The problem of name conflict occurs when two or more interfaces have the methods with the same names
and signature. Two strategies are possible here: gluing of methods and renaming. The strategy of gluing is used
when the class — descendent of interfaces — supposes that different interfaces set one and the same method, the
unified implementation of which and shall be provided with the descendent. In this case the descendent creates
the only public implementation.

Another strategy emanates from the various implementations of different interfaces. In this case
conflicting methods should be renamed. To do so, it is enough to implement methods of different interfaces as
private, and after open them renaming.

Example of two interfaces, having methods with equal signature and the class — a descendent of these
interfaces, applying different strategies of implementation for the conflicting methods.

Example of the name conflict in interfaces:
public interface IProps{

void Propl(string s);

void Prop2 (string name, int val);

void Prop3();

public interface IPropsOne{
void Propl(string s);
void Prop2 (int val);
void Prop3();

public class ClainTwo:IProps,IPropsOne {
/I gluing of methods of two interfaces
public void Propl (string s) { Console.WriteLine(s); }
/I restart of methods of two interfaces
public void Prop2(string s, int X) { Console.WriteLine(s + x); }
public void Prop2 (intx) { Console.WriteLine(x); }
I/ private implementation and renaming of methods of two interfaces
voidIProps.Prop3() {
Console.WriteLine("Method 3 of interface 1");
}
voidIPropsOne.Prop3() {
Console.WriteLine("Method 3 of interface 2");

public void Prop3Frominterfacel() { ((IProps)this).Prop3(); }
public void Prop3Frominterface2() { ((IPropsOne)this).Prop3(); }

public void TestTwolnterfaces(){

ClainTwo claintwo = new ClainTwo();
claintwo.Prop1("Gluing of a property of two methods");
claintwo.Prop2(“restart.: ",99);

claintwo.Prop2(9999);

claintwo.Prop3Frominterfacel();

claintwo.Prop3Frominterface2();

Console.WriteLine("Interface method requests methods of interface 1!");

IProps ipl = (IProps)claintwo;

ipl.Propl("interface IProps: property 1");
ipl.Prop3();

110 Becmuux Uunosayuonnozo Eepazutickozo yuusepcumema. 2015. Ne 2 ISSN 1729-536X

Console.WriteLine("Interface object requests methods of interface 2!");
IPropsOne ip2 = (IPropsOne)claintwo;

ip2.Prop1("interface IPropsOne: propertyl");
ip2.Prop3();
}

The second problem with multiple inheritances of interfaces is inheritance from the common ancestor.
For interfaces the situation of repeated inheritance is likely, since interface, as any other class, can be
a descendant of another interface. Since only signature and implementation are inherited at interfaces, the
problem of doubling inheritance is resolved into the problem of doubling inheritance of the name conflict.

There is also treatment of exceptional situations. The C# language inherited profile of the C++ language
exceptions, adding its amendments [3]. Let’s examine the profile in details:

try {..}
catch (T1el){...}

catch(Tkek) {..}
finally {...}

The program lines of the module, where origin of exceptional situation are possible, shall be made
guarded, included into the block with the key word try. After try-block the catch-blocks, called processor-
blocks of exceptional situations, can succeed. There can be several, but can be missing. Finally-block, a block of
finalization, which also can be missing, completes the sequence. All this construction can be added to the
structure. The structure of try-block can have another try-catch-finally construction

Throw [expression] — generates exception and creates a class object, being the descendant of Exception
class. Usually this expression is new, creating the object of Exception class or its descendant [4].

The try block could cover the resources: files are open, some devices are engaged. Finally-block releases
the resources, occupied by the try-block. If it is included, it is always fulfilled, exactly after completion of the
try-block operation, no matter how it was completed.

REFERENCES

1 Tpoencen 3. C# u miardpopma .NET. — CII6., 2005r. — 796 c.

2 Apuep T. OcuoBel C#. — M.: Pycckast penakius, 201 1.

3 JIabop B.B., Cu Ulapn. Co3nanue npunoxxennit juist Windows. — Mu.: Xapsecr, 2013. — 384 c.

4 Tlernonba Y. IporpammupoBanue ¢ ucrnonb3oBanuem Microsoft Windows Forms. — CII6., 2006. —
410 c.

REFERENCES

1 Troelsen A. C# i platforma. NET. - CPb., 2005 - 796 s.

2 Archer T. Osnovy C#. - M. Russkaya redaktsiya, 2011.

3 Labor V.V., Si Sharp. Sozdanie prilozhenii dlya Windows. — Mn.: Kharvest, 2013 — 384 s.

4 Pettsold Ch. Programmirovanie s ispolzovaniem Microsoft Windows Forms. — SPb., 2006. — 410 s.

TYHIH

T.M. Canuii, nedazcocuxa ulibiMOAPbIHbIY KAHOUOAMbL
Hnnosayusnvix Eypasus ynueepcumemi (Ilasnooap x.)

C# 6azoapnamanay mininde unmepgpeiicmi ycyzeze acvlpyovlyy eKi cmpamezuscuyl

Maxkanada unmepeticmi dcyzeze acvlpyovbly eKi cmpame2usicbl cunammanaowvl. Bipinwi cmpameaus
Kaacc 0bvekminepiniy Kocvlmuia Kacuemmepin bepedi. Mnmepeiicmen xelin scypemin dicane oHblH 20icmepin
icKe acelpamvlt K1acc 01apobl aHblK JHcy3e2e acvlpa anadsl. Icke acvipyovly backa cmpamezuscol 20iCmiy ambvii
unmepeticmiy amvimen anvikman, unmep@eucmiy Keubip aoicmepin dcabwix (private) emy 60avin madwviiAOLL.

Tyiiin co30ep: umnmepdpeiic, bazoapramanay, a0icmep, 6Oaz0apaamanvlk Koo, Kiacmap,
bagoapramanayoviyy 00veKmi-oablmmanean mini

PE3IOME

T.M. Canuii, kanouoam neoazo2uieckux HayKk
Hunnosayuonnwviii Espasutickuti ynueepcumem (Ilasénooap)

Becmnux Uunosauuonunozo Eepasuiickozo yuusepcumema. 2015. Ne2 ISSN 1729-536X 111

/ee cmpamezuu peanuzayuu unmepdgheiica 6 azvike npozpammuposanusn CH

B cmamve onucvisaromea ose cmpameeuu peanusayuu unmepeiica. Ilepsas cmpamezus 3adaem
oonoanumenvhuie ceolicmea 06vekmos kiacca. Knace, nacnedyrowuii unmepgbetic u peanusyiowuii e2o menoovl,
MOdKcem peanu3o8ams ux A6Ho. [pyeas cmpamezus pearuzayuu coCmoum 6 mom, umoobwvl HeKomopuvle Memoobl
unmep@eiica coenamo 3aKpvlmvimu (private), ymouHus ums memooa umenem unmepgetica.

Kntouesvie cnosa: unmepdeiic, npocpammuposanue, Memoovi, NPOSPAMMHBIL KOO, KAACCHI, 00bEKMHO-
OpUEHMUPOBANHDLIL A3bIK NPOSPAMMUPOBAHUSL.

VIK 378.14

T.M. Saliy, Candidate of Pedagogical Science

Innovative University of Eurasia (Pavlodar),

.M. Makarikhina, Candidate of Pedagogical Science
Pavlodar State University, named after S. Toraigyrov (Pavlodar)
E-mail: toma_sal@mail.ru, michmacha@mail.ru

Using new generation e-books in high school educational process,
including faculty of teachers’ development

Annotation. The article describes that the effective management of the learning process new textbooks
using need to create a model of teacher action. The created model explicitly takes into account the objectives,
methods, learning outcomes. With its help solve the problem of the knowledge of the student. And the problem of
managing the cognitive activity is settled.

Key words: educating, electronic textbooks, educational process, higher education, control of knowledge

The current stage of Kazakhstan and Russian society development is characterized by the educational
possess of information technologies. The transition to the education multi-level system requires higher education
institutions providing such training of highly qualified staff, which could combine the ability to solve actual
scientific, technical and socio-economic problems.

The most important moment in modern education today is how the knowledge-based acquire skills, to
transform them and develop new knowledge in learners’ professional activities. Modern Kazakh and Russian
education’s difficult task is to provide humanistic, technological and fundamental principles integration with
modern requirements of information, humanization and fundamental education bases.

Teacher education, as an integral part of modern education system, has the vital role of staffing higher
education. The need for changes in teacher education is defined as the external challenges and internal laws of its
development, future needs of an individual, society and state.

You can often come across the term “new information technologies” in the scientific and popular
literature. This is quite a broad term for a variety of practical applications. The adjective “new” in this case
emphasizes radically different approach from the previous direction of technological development. Their
introduction is an innovative instrument in the sense that it fundamentally changes the contents of various high
schools activities. You can create a well-designed electronic textbook, which will carry only the information
from a paper to computer-based, but the technology does not satisfy the basic principles of educational
technology and will not solve the theoretical or practical problems that appeared previously in didactics.

Nowadays multimedia technologies can integrate a variety of informational media presentation: texts,
static and dynamic graphics, video and audio clips into a single complex. The use of animation, sound and video
greatly enhances the assimilation of educational material on the structuring of knowledge and reduces the
learners’ level of cognitive effort, while reducing the time required for the study of such a problem.

Accordingly, the media are being used successfully in the development of electronic textbooks. New
textbook’s generation provides the ability to select a desired line of development represented by the plot or
situation on the user actions’ analysis.

The use of e-textbooks in the classroom activities is an effective means of enhancing learners' cognitive
activity, which opens up opportunities for teachers to improve training. Simulation computer programs are
studied material more clearly; they can show the experiments with no equipment in high school. In addition to
this, learning technology significantly saves time on the classroom activities (information retrieval, control
learners’ knowledge).

Since modern education is characterized by the active use of information and communication
technologies (ICT) and various devices on their basis to ensure: access to the global resources of the Internet,
operation of automation systems, use of electronic educational purposes, computer psycho-educational

